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To provide a framework for studies to understand the contribution of SALT OVERLY SENSITIVE1 (SOS1) to salt
tolerance in Thellungiella halophila, we sequenced and annotated a 193-kb T. halophila BAC containing a
putative SOS1 locus (ThSOS1) and compared the sequence to the orthologous 146-kb region of the genome of
its salt-sensitive relative, Arabidopsis thaliana. Overall, the two sequences were colinear, but three major
expansion/contraction regions in T. halophila were found to contain five Long Terminal Repeat retro-
transposons, MuDR DNA transposons and intergenic sequences that contribute to the 47.8-kb size variation in
this region of the genome. Twenty-seven genes were annotated in the T. halophila BAC including the putative
ThSOS1 locus. ThSOS1 shares gene structure and sequence with A. thaliana SOS1 including 11 predicted
transmembrane domains and a cyclic nucleotide-binding domain; however, different patterns of Simple
Sequence Repeats were found within a 540-bp region upstream of SOS1 in the two species.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Excess salt in the soil affects the growth of most plants several
ways. Uptake of sodium ions alters the balance of sodium and
potassium in cells and reduces potassium-basedmetabolic activity [1].
The build-up of salt in the soil also alters the soil water potential
making it difficult for the plant to continue to take up water required
for sustained growth [1]. Thellungiella halophila (T. halophila), a
member of the Brassicaceae, has recently emerged as a model for
understanding plant adaptation to growth in saline conditions. As a
halophyte, T. halophila is able to grow in high salt concentrations,
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conditions that inhibit the growth of its salt-sensitive relative Arabi-
dopsis thaliana (A. thaliana, a glycophyte) as well as the growth of
most crop plants [2–3]. T. halophila has a small diploid genome
(240 Mb (2n=14)) [3], a short and self-fertile life cycle and an ability
to be transformed by floral dipping with Agrobacterium tumefaciens.
Evolutionary studies have shown that A. thaliana and Brassica split
from a common ancestor approximately 14.5 to 20.4 MYA [4]. T.
halophila forms a clade separate from other members of the Brassi-
caceae, implying that it originated from a different lineage after
divergence from a common ancestor of A. thaliana [5–8] and sug-
gesting that salt tolerance originated from a distinct lineage.

Membrane transport proteins have been shown to be important
components of salt tolerance mechanisms due to their regulation of
ion homeostasis. A well-defined pathway for regulation of sodium ion
homeostasis during plant growth in salt in A. thaliana is the SALT
OVERLY SENSITIVE (SOS) pathway [2,9,10]. In this pathway, a calcium-
binding protein, SOS3, perceives a change in intracellular calcium
induced by salt stress and then binds to and activates SOS2, a serine-
threonine protein kinase. The SOS3–SOS2 complex increases the
expression and the activity of SOS1, a plasma membrane Na+/H+

exchanger (antiporter) [11,12]. Activated SOS1 transports cytosolic
sodium out of the cell, reducing the cellular build-up of toxic levels of
sodium [10]. Recent studies have provided insight into the biochem-
ical changes that take place when T. halophila is grown in salt [13].
Sodium accumulation appears to be regulated with highest levels in
old leaves, followed by young leaves and taproots and lowest levels in
lateral roots. The H+ transport and hydrolytic activities of the vacuolar
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Fig. 1. Dotplot alignment between T. halophila BAC (FJ386403) and A. thaliana
(AT_Chr2_SOS1). Expansion/contraction regionswith over 5 kb difference are indicated
as I–III. Non-colinear regions with genomic rearrangements that include coding
sequences are designated as A–D.
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(tonoplast) and plasma membrane H+-ATPases and the Na+/H+

antiport activity at the tonoplast are enhanced in salt-grown T.
halophila, suggesting a link between salt tolerance and regulation
of sodium ion homeostasis. Recently, a T. halophila SOS1 cDNA
sequence was compared to SOS1 sequences from A. thaliana and the
halophyte Mesembryanthmum crystallinum [14]. Amino acid sequence
comparisons indicated that the SOS1 coding regions are relatively
well-conserved with all sequences containing the typical SOS1
transmembrane and cyclic nucleotide-binding domains. To function-
ally link ThSOS1 to salt tolerance, ThSOS1 knock down lines were
generated using an RNAi strategy [14]. When the growth of RNAi lines
with greater than a 50% reduction in ThSOS1 transcript accumulation
were compared to the growth of wild-type T. halophila, mature RNAi
plants showed no difference in growth under control (no salt) con-
ditions. However, when grown in the presence of 350 mM NaCl, the
RNAi lines exhibited severe salt-sensitivity and resembled A. thaliana
grown in salt [14]. This result indicates that, as in A. thaliana, SOS1 in T.
halophila plays a significant role in its ability to grow in salt and
suggests that altered levels of SOS1 expression might be important for
differences in glycophyte/halophyte growth in response to salt [14].
Evidence for the importance of the temporal and spatial expression of
SOS1 in glycophyte/halophyte growth differences comes from ana-
lysis of ThSOS1 expression in the presence and absence of salt [15] and
from comparative studies in which shoot ThSOS1 expression was
shown to be more strongly induced under salt stress and root ThSOS1
expression constitutively higher in non stress conditions when com-
pared to AtSOS1 expression in A. thaliana [16].

Comparative genomics has been used to identify biologically signi-
ficant regions of genomes, for positional cloningof genes and for studies
of the evolutionary history of whole genomes or genomic regions [17–
20]. Comparative analyses between A. thaliana and related species like
T. halophila with novel traits should provide important information
about recent genome diversification, genetic variation within the
Brassicaceae and ultimately insight into the origin of this variability.

To provide a framework for studies to link SOS1 expression to
differential salt tolerance, we carried out a comparative genomic ana-
lysis to determine if differences in the non-coding region of SOS1 are
found in the two species. A 193 kb T. halophila BAC clone containing the
putative SOS1 locus was sequenced, annotated and compared with
sequence in the orthologous 146 kb region of the A. thaliana genome on
chromosome 2. This comparative sequence analysis provided insight
into the structure and organization of the T. halophila genome,
determined the complete structure of the T. halophila SOS1 gene and
identified putative T. halophila SOS1-specific genomic features.

Results

Overall sequence comparison of the SOS1 orthologous region in
T. halophila and A. thaliana

To investigate the genome structure of the SOS1 locus and its
surrounding region in T. halophila, we sequenced BAC ThSBa0001B18
(NCBI GenBank Accession No. FJ386403; 193,021 bp) identified by
hybridization of a ThSOS1 probe to a T. halophila BAC library. The
orthologous region on chromosome 2 of A. thalianawas 146,312 bp in
size. Unless indicated, the comparisons we report refer to these
genomic regions from the two species. The overall GC content was 35%
in T. halophila and 33% in A. thaliana, similar to the overall GC content
of 35.5% reported for chromosome 2 of A. thaliana [21]. To examine the
overall colinearity, the T. halophila BAC sequence was aligned to the
orthologous A. thaliana sequence using a dotplot alignment program.
As shown in Fig. 1, a high level of conservation was observed between
the two species; however, several local genome rearrangements,
which disrupt the linear pattern, were detected. Most of these
disruptions were due to expansions/contractions, duplications and
inversions (Fig. 1, Supplemental Table 1).
Gene prediction and gene structure

A total of 27 Open Reading Frames (ORFs) from T. halophila and 30
ORFs from A. thalianawere predicted and grouped into 20 orthologous
gene sets based on gene prediction software, full-length cDNAs,
Expressed Sequence Tags (ESTs) and homology searches against the A.
thaliana protein database (Fig. 2, Supplemental Table 2). Predicted
genes were defined from the translational start codon to the stop
codon. All genes or their encoded proteins showed E-values less than
E−17 based on sequence similarity analyses of A. thaliana ESTs and
proteins using TBLASTN and BLASTP, respectively.

The average gene density was 1 gene per 7.1 kb for T. halophila and
1 per 4.9 kb for A. thaliana (Supplemental Table 3). The gene density
calculated for the 26,819 genes in the whole A. thaliana genomewas 1
gene per 4.4 kb [22]; this 0.5 kb difference indicates that average gene
density around the SOS1 locus is lower than the average gene density
at whole genome level. To estimate the gene number for the T.
halophila genome, its genome size was divided by the T. halophila gene
density, resulting in a gene count of 33,576 genes, approximately 6800
more genes than in A. thaliana.

The average gene size was 2321 bp for T. halophila and 2073 bp for
A. thalianawhile the average peptide size was 442 amino acids (aa) in
T. halophila and 420 aa in A. thaliana. Data for the whole A. thaliana
genome indicated an average gene size of 2221 bp and an average
predicted protein length of 517 aa (TAIR 7 release) [22], indicating that
estimated gene and protein sizes around the SOS1 locus are smaller
than the estimates at the whole genome level. When compared to the
whole A. thaliana genome, T. halophila genes in this region have larger
average gene sizes, but smaller average protein sizes. In the SOS1
orthologous region, the average exon number was 5.3 per gene in T.
halophila and 5 per gene in A. thaliana. The average exon size was
251 bp in both species, which is smaller than the average exon size of
268 bp calculated using the whole A. thaliana genome [22]. The
average intron number was 4.3 per gene in T. halophila and 4 per gene
in A. thaliana. Since the 5′ UTR and 3′ UTR regions of each gene were
not defined in our annotation, only introns found within an open
reading frame (ORF) were considered. The average intron size was
231 bp in T. halophila and 201 bp in A. thaliana. These values were
greater than the average intron size of 165 bp calculated using the
whole A. thaliana genome [22]. This comparison indicates that intron
size is the primary determinant of gene size variation between T.
halophila and A. thaliana in the SOS1 orthologous region.

Transmembrane proteins play important roles in mediating
communication in compartmentalized cellular environments. The



Fig. 2. Genomic organization around the SOS1 orthologous region in T. halophila and A. thaliana. Genes 11a–b, 17a–b and 19a–f represent tandemly duplicated genes. In A. thaliana,
gene 16 was annotated as a single ORF with supporting EST evidence (TC282705) but in T. halophila, 16-1 and 16-2 were annotated as two separate ORFs because no gene model or
EST evidence supported the fusion of two ORFs. LTR, LTR retrotransposon; SINE, Short Interspersed Transposable Element; LINE, Long Interspersed Transposable Element; MuDR,
Mutator-like DNA transposon; Hel, Helitron; hAT, hAT DNA transposon; SSR, Simple Sequence Repeat.
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presence of multiple genes with transmembrane domains in the SOS1
regionwas predicted using the Simple Modular Architecture Research
Tool (SMART). In this region of T. halophila, eight genes, Th07, Th08,
Th09, Th12, Th14, and Th19a-Th19c were shown to contain trans-
membrane domains. In the orthologous region of A. thaliana, At07
(AT2G01950), At_c (AT2G01960), At08 (AT2G01970), At09 (SOS1,
AT2G01980), At12 (AT2G02020), At14 (AT2G02040) and At19a–At19f
(AT2G02100–AT2G02147) were shown to have transmembrane
domains. Whether evolutionary forces maintained transmembrane
gene clusters in this region remains to be determined.

Identification of transposable elements

Both Long Terminal Repeat (LTR) retrotransposable and DNA
transposable elements were identified in the SOS1 region of the two
Table 1
Composition of transposable elements in the T. halophila BAC and its orthologous region
in A. thaliana.

Transposable elements T. halophila A. thaliana Location

Number Size (bp) Number Size (bp)

I. Retrotransposon
LTR retrotransposon
Ty1/Copia type 4 20,498 Intergenic
Ty3/Gypsy type 1 8839 Intergenic

Non LTR retrotransposon
LINE 1 7731 Intergenic
SINE 1 177 Intergenic

Percentage in the BAC 15.2% 5.4%
II. DNA transposon
MuDR 1 4622 Intergenic
Helitron 3 4280 Intergenic
hAT 1 531 Intergenic

Percentage in the BAC 2.4% 3.3%
Total number 6 6
Total size (bp) 33,959 12,719
Total percentage 17.6% 8.7%
species (Table 1). Five intact LTR retrotransposable elements were
identified in T. halophila based on both homology searches against the
A. thaliana repeat database and structural identification (including
homology between LTR pairs, the presence of 5′ TG—CA3′ in the
beginning and end of an LTR, identification of 5 bp tandem duplication
insertion sites and internal coding sequences). LTRs 1, 2, 4 and 5
(Fig. 2) were annotated as copia-type retrotransposons of 4754 bp,
4507 bp, 6429 bp and 4808 bp in size, respectively. LTR3 was
annotated as 8839 bp of gypsy-type LTR retrotransposon. All five
intact LTR retrotransposons were detected in intergenic regions and
contributed to the disruption of microcolinearity. A 4622 bp-Mutator
DNA transposon (MuDR)-like structure was found with 123 bp of
Terminal Inverted Repeats (TIRs) and 9 bp of target site duplications
(TTATTTTAT) flanking the TIRs. A Pfam program search showed that
this MuDR-like structure contained a MuDR domain that encodes a
transposase for Mutator transposable elements.

In contrast, A. thaliana appears to have a completely different
repertoire of repeat elements in the SOS1 orthologous region. First, no
intact LTR retrotransposons were identified while two types of non-
LTR retrotransposons were identified: a 177 bp-SINE (Short Inter-
spersed Nuclear Element)-like structure and a 7731 bp-LINE (Long
Interspersed Nuclear Element)-like element. In addition, two types of
DNA transposons were found: one hAT and three Helitrons. The hAT-
like structure was confirmed by identification of 8 bp-target site
duplications (TG/AAATACG). The three Helitrons were confirmed by
detection of conserved termini of 5′-TC and CTAG-3′, their insertion at
AT target sites and the presence of palindromic structure (an 18 bp-
palindromic structure (TCCGCGGTATACCGCGGA) in the 11 bp
upstream of the 3′ terminus of Helitron1, an 18 bp-palindromic struc-
ture (CCCGCGGTAAATTGCGGG) in the 11 bp upstream of the 3′
terminus of Helitron2 and a 17 bp-palindromic structure (CCTGCGG-
TATACCGCGG) in the 12 bp upstream of the 3′ terminus of Helitron3).

The presence of five LTR retrotransposons and one MuDR in T.
halophila suggests that these elements inserted in the present location
after speciation. To determine if this is the case, we dated the insertion
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times of these LTR retrotransposons. At the time of insertion, the two
LTRs of an intact LTR retrotransposon are assumed to be identical.
Based on calculations of sequence divergence between two LTRs of an
element, the insertion times can be estimated. The insertion times of
LTR1, LTR3, LTR4 and LTR5 were 1.39 MYA, 0.47 MYA, 1.17 MYA and
1.14MYA, respectively. The insertion time of LTR2 appeared to bemost
recent based on 100% sequence identity between a pair of LTRs and,
therefore, could not be dated. All of the transposable elements
identified in this analysis were located in intergenic regions in both T.
halophila and A. thaliana. The total size of transposable elements was
33,959 bp in T. halophila and 12,719 bp in A. thaliana. This accounted
for 17.6% of the region studied in T. halophila and 9% of the
corresponding region in A. thaliana.

Simple sequence repeat analysis

Simple Sequence Repeat (SSR) composition was analyzed using
the A. thaliana Simple Sequence Repeat Database and the SPUTNIK
program. In the SOS1 region of T. halophila, a total of 42 SSRs were
found between and within genes, including four mononucleotides, 25
dinucleotides, 12 trinucleotides and one hexanucleotide (Supple-
mental Table 4). Dinucleotide SSRs were the major SSRs, and
accounted for more than half of the total SSRs found in the SOS1
region of T. halophila. Thirty out of 42 SSRs in T. halophila were found
in intergenic regions, including two SSRs in LTR retrotransposons, six
SSRs in exons and six SSRs in introns. In the orthologous region of A.
thaliana, a total of 20 SSRs were detected, including one mononucleo-
tide, 11 dinucleotides and eight trinucleotides. Dinucleotide SSRs were
also the major SSRs in A. thaliana. Ten SSRs were found in intergenic
regions, eight SSRs in exons and two SSRs in introns. Analysis of SSRs
in intergenic regions uncovered two sets of SSRs with similar flanking
sequences in orthologous positions. The TC/GA repeat in the
intergenic region between gene 05 and gene 06 contained nine
repeats in T. halophila and eight repeats in A. thaliana. The CAA/TTG
repeat in the third exon of gene 17a (C2H2 zinc finger protein) con-
tained 13 repeats in T. halophila and 15 in A. thaliana. SSRs identified in
both species should serve as molecular genetic markers for future
genetic studies.

Colinearity and disruptions

As shown in Fig. 2 and Supplemental Table 2, the T. halophila
genomic region analyzed shared significant colinearity in terms of
gene content, order and orientation relative to the orthologous region
in A. thaliana. Of the 27 predicted ORFs from T. halophila and 30 from
A. thaliana, six ORFs from T. halophila and ten from A. thaliana were
present as duplicated copies. These duplicated copies were found in
genes 11, 13, 17 and 19. All but one of the twenty sets of orthologous
genes, gene 13, had identical orientations. To determine orthologous
relationships, phylogenetic trees of duplicated genes 11, 17 and 19
were constructed (Supplemental Fig. 1).

Even though the two sequenced regions were highly conserved,
there were several disruptions to this conservation, including the
presence of transposable element insertions/deletions, non-colinear
genes and gene duplications and inversions. Transposable element
insertion in three regions was found to be themost significant cause of
colinearity disruption and genome size variation between the two
species (Fig. 1, Supplemental Table 1). Region I contained two copia-
type LTR retrotransposable elements. Region II carried one gypsy-type
LTR retrotransposable element and one MuDR DNA transposon, while
Region III included two copia-type LTR retrotransposons. The total size
of these three regions was 47.8 kb (Supplemental Table 1), which was
similar to the 46.7 kb difference in the two orthologous regions.

Two non-colinear genes were identified in T. halophila (Th_A and
Th_B) and three in A. thaliana (At_a, At_b and At_c). To explore the
possibility that orthologous counterparts of these genes exist as partial
genes that cannot be detected by gene prediction programs, TBLASTN
was performed against the A. thaliana genome sequence. However, no
traces of any partial genes were detected. A similar search was made
with the T. halophila sequence, using the amino acid sequences of At_a,
At_b andAt_c via TBLASTN. In the T. halophila sequence, a gene fragment
of At_a was found while gene fragments of At_b and the At_c were not
detected. To investigate whether non-colinear genes in T. halophila are
present in other locations in the A. thaliana genome, the A. thaliana
protein database was searched using BLASTP. Two copies of Th_A (Valyl
t-RNA synthetase) homologues were found on chromosome 1 in A.
thaliana (AT1G14010, 1E−41 and AT1G27160, 8E−34) and Th_B (F-box
protein)was found inmultiple copies in theA. thaliana genome. The two
genes with highest homology to Th_B were AT2G02030 (2E−89) and
AT2G05600 (3E−69), suggesting that homologues of Th_A and Th_B
exist in other locations in the A. thaliana genome. Since the T. halophila
genome has not yet been sequenced, we were unable to determine
whether homologues of non-colinear A. thaliana genes reside in other
parts of the T. halophila genome.

Inversions and duplications were also shown to contribute to
conservation disruption. Region A (1.3 kb) contained an inversion
(Fig. 1, Supplemental Table 1) with a gene encoding a putative F-box
protein in the sense orientation in A. thaliana but in the antisense
orientation in T. halophila (Supplemental Table 2). Region B (25.9 kb)
contained duplications (Fig.1, Supplemental Table 1)with two copies of
putative peptide transporter genes identified in both species. Region C
(11.5 kb) contained duplicated genes thatwere inverted in both species;
two copies of putative zinc finger protein genes were present in an
inverted array (Fig. 1, Supplemental Table 1). Region D (27.6 kb)
contained a tandem array of duplicated genes encoding putative
protease inhibitors; the two species had different numbers of duplica-
tions in this region with four copies in T. halophila and six copies in A.
thaliana (Fig. 1, Supplemental Table 1, Supplemental Table 2).

Evolutionary analysis of functional conservation and divergence time

To determine if functional conservation has been maintained
between orthologous genes in these two related species, a Ka/Ks test
was performed. Of the 20 sets of genes, those with sequence identity
over 80% in both cDNA and amino acid composition were selected for
further evolutionary analysis. Gene pairs with unclear orthology
between the two species, such as the gene 19 duplicates, were excluded.
A total of 17 orthologous gene sets were used in this analysis for Ka/Ks
tests and estimation of divergence time of the two species. The Ka/Ks
ratios for all 17 gene pairs were less than 1 (Table 2) indicating that
functional conservation was maintained between these orthologous
pairs. Fromour analysis, the approximate divergence time of T. halophila
and A. thaliana was estimated to be between 10 and 14 MYA (Table 2)
implying amore recent common ancestry for T. halophila and A. thaliana
relative to Brassica andA. thaliana thanhas been reported previously [4].
Previous divergence time between Brassica and A. thaliana was
calculated using information from mitochondrial gene sequences
which are known to have silent nucleotide substitution rates that differ
fromnuclear-encoded gene sequences [23,24]. Therefore, it is likely that
calculating divergence times using orthologous nuclear genes provides
more precise information. To determine if selection was imposed on
protein-coding sequences of paralogous genes, Ka/Ks tests among
paralogous genes were performed for genes 11, 17 and 19. Their Ka/Ks
ratios were also less than 1 (Supplemental Table 5), implying functional
conservation between paralogous pairs.

Structure comparison of ThSOS1 and AtSOS1

Because the SOS1 gene is a major determinant of salt tolerance in
A. thaliana, extensive comparative analysis of the SOS1 genes from T.
halophila and A. thaliana was performed. First, to confirm orthology
between ThSOS1 and AtSOS1, a neighbor joining phylogenetic tree



Table 2
Ratio of nonsynonymous (Ka) vs. synonymous (Ks) substitution rates in 17 orthologous genes and estimated divergence time.

T. halophila A. thaliana Putative function Ka/Ks Divergence time (MYAa)

Th01 At01 Putative phosphatase 0.212 10.26
Th02 At02 Cyclin-like protein 0.201 12.28
Th03 At03 Putative microtubule-associated protein 0.1385 10.4
Th04 At04 Unknown 0.3554 9.44
Th06 At06 Putative C2H2-type zinc finger protein 0.156 11.87
Th07 At07 Brassinosteroid receptor-like protein 0.0713 15.11
Th08 At08 Putative endomembrane protein 0.0327 12.78
Th09 At09 Putative Na+/H+ antiporter 0.2857 10.42
Th10 At10 Unknown 0.3201 9.93
Th11 At11b Putative glutamate decarboxylase 0.0559 13.75
Th12 At12 Putative peptide transporter 0.1039 14.96
Th14 At14 Putative peptide transporter 0.0378 14.13
Th15 At15 Putative NADH dehydrogenase 0.157 12.76
Th17a At17a Putative C2H2-type zinc finger protein 0.1474 7.43
Th17b At17b Putative C2H2-type zinc finger protein 0.1356 11.61
Th18 At18 Putative helicase 0.1147 10.06
Th20 At20 Putative PPR repeat protein 0.1753 13.07
Mean 11.78
SDb 2.11

a Million years ago.
b Standard deviation.
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was constructed using eight members of the NHX family from A.
thaliana and ThSOS1 with a bootstrap value of 1000 (Supplemental
Fig. 2). ThSOS1 clustered with AtSOS1 (NHX7) and separated from all
other A. thaliana NHX gene family members, indicating that ThSOS1
was orthologous to AtSOS1. The ThSOS1 gene (from the ATG to the
stop codon) was 6267 bp in length and encoded a predicted protein
sequence of 1146 aa, while AtSOS1 was 6076 bp long and encoded a
predicted 1146 aa protein (Fig. 3). Both genes had the same total exon
size of 3441 bp, but had different total intron sizes of 2826 bp for
ThSOS1 and 2635 bp for AtSOS1, indicating that the 191 bp gene size
difference was due to differences in intron size. Both genes had 23
exons with an average size of 150 bp. Average intron sizes were 129 bp
in ThSOS1 and 120 bp in AtSOS1. Peptide sequence identity was 83%
and cDNA sequence identity was 87%.

The three main domains that are important for AtSOS1 function
were also found in ThSOS1. According to Pfam analysis, ThSOS1
contained the Na+/H+ exchange domain (aa 31 to 444), 11
transmembrane domains (Supplemental Fig. 3; aa 50 to 69, 86 to
105, 123 to 142, 155 to 174, 191 to 120, 136 to 155, 184 to 203, 221 to
239, 257 to 276, 293 to 312 and 325 to 343) and a cyclic nucleotide-
binding domain (aa 758 to 843).
Fig. 3. Gene structure comparison of ThSOS1 and AtSOS1. Exons are indicated as filled boxes a
are indicated.
A significant structural difference between the two genes was the
presence of three SSRs in the 5′ upstream region of ThSOS1. (TCA)8,
(CTT)18 and (TA)12 were identified within 540 bp upstream of the
ThSOS1 putative translational start site (Fig. 3). No unique SSRs were
identified in the corresponding region in AtSOS1, but a (CTT)3 repeat
was detected in the AtSOS1 5′ UTR.

Discussion

Gene colinearity is generally conserved in the SOS1 orthologous region,
but a few exceptions exist

Analysis of gene homology, order, orientation and physical dis-
tance for a single orthologous region of the T. halophila and A. thaliana
genomes revealed that they share a high degree of colinearity. First,
both regions contain 20 putative gene sets that shared a high level of
sequence similarity (bE−20) in both amino acid and cDNA sequence.
Second, these 20 genes are in the same order (colinear) in the two
species. Third, the transcriptional orientation of all 20 genes is the
same except for gene 13 which has an opposite transcriptional
orientation. Fourth, all 20 genes are organized within a similar
nd introns are represented as lines. Location of SSRs in the 5′ UTR of ThSOS1 and AtSOS1



201G. Nah et al. / Genomics 94 (2009) 196–203
physical space (146 kb) in both species (excluding the intergenic
regions containing 5 LTR retrotransposable elements in T. halophila).

In spite of this conservation of gene colinearity, comparative analysis
revealed the presence of two non-colinear genes in T. halophila and
three in A. thaliana. For example, an orthologue of Th_A (Valyl t-RNA
synthetase) in T. halophila is absent in the SOS1 orthologous region in A.
thaliana (chromosome 2), but is present in a paralogous region on A.
thaliana chromosome 1. Another non-colinear gene in T. halophila, Th_B
encodes an F-box protein and F-box homologues are present as many
copies throughout the A. thaliana genome. In A. thaliana, At_a
(AT2G01918), At_b (AT2G01920) andAt_c (AT2G01960)were identified
as non-colinear genes. While it is currently not possible to determine if
orthologous genes for these three non-colinear genes are present in the
T. halophila genome, if either gene contributes to the survival of the
species, then either or both genes are likely to be present. Among these
non-colinear genes, a highly degraded gene fragment of At_a
(AT2G01920, Oxygen-evolving protein-coding gene) was identified in
the orthologous position of the T. halophila sequence. Therefore, it
appears that gene disruption by an unknown mechanism has also
influenced the evolution of this region. With the sequencing of the T.
halophila genome, it will be possible to determine if a redundant copy of
At_a exists elsewhere in the T. halophila genome.

LTR retrotransposons are major contributors to local size variation in the
SOS1 orthologous region in T. halophila

Retrotransposable elements have been shown to affect genome
structure and evolution in a number of ways leading to genome size
variation, genome rearrangement and changes in the regulation of gene
expression [25]. Five LTR retrotransposons were identified in the T.
halophila genomewhile nonewere found in this region in A. thaliana. All
of these elements are located in intergenic regions and account for 15.2%
of the total BAC sequence (Table 1). The genome size of T. halophila is
approximately 240Mb, which is approximately twice that of A. thaliana
(125 Mb). LTR retrotransposons have been involved in plant genome
size variationdue to their copy-and-pastemodeof transpositionvia RNA
intermediates [25]. In the grass family, LTR retrotransposons are
estimated to make up 14% of the rice genome (430 Mb) [26], 50 to
60% of the maize genome (2500 Mb) [27] and over 70% of the barley
genome (4800 Mb) [28]. In the Brassicaceae, Class I elements, which
include both LTR and non-LTR retrotransposons, comprise 14% of the B.
oleracea genome (600 Mb) and 4% of the A. thaliana genome (125 Mb)
[29]. Though the average gene size in T. halophila is slightly larger than in
A. thaliana, this difference did not appear to make a significant
contribution to the overall genomic increase. Rather, the average gene
density is significantly lower in T. halophila indicating that the intergenic
regions are responsible for the genomic increase. Therefore, these five
LTR retrotransposons in T. halophila are major contributors to the size
increase found in theSOS1 region. The insertionsoffivenon-orthologous
LTR retrotransposons in the T. halophila genome are estimated to have
taken place less than 1.5 MYA. Based on estimates from this analysis
suggesting that A. thaliana and T. halophila shared a common ancestor
approximately 11.8 MYA (Table 2) prior to speciation, the expansion of
the T. halophila genomic sequence around the SOS1 locus appears to
have taken place via insertion of LTR retrotransposons after its diver-
gence from A. thaliana. Based on the observation that approximately
15.2% of the T. halophila sequence around the SOS1 locus is com-
posed of LTR transposable elements, estimates of the contribution of
these elements to the whole T. halophila genome would be ∼36.5 Mb
(240 Mb×0.152).

ThSOS1 shares similar gene structure and functional domains with
AtSOS1 but exhibits a different pattern of SSRs in the 5′ upstream region

ThSOS1 has a similar gene structure to AtSOS1 and contains 11
transmembrane domains and a cyclic nucleotide-binding site, indica-
ting that ThSOS1 likely performs a function similar to AtSOS1. One
feature that distinguishes the two SOS1 genes is the presence of
several SSRs in the 5′ upstream region of ThSOS1. Among three SSRs
foundwithin 540 bp of 5′ upstream sequence (Fig. 3), the (CTT/GAA)n
repeat contains sequence similar to the TCA-element (TCATCTTCTT)
which has been identified as a salicylic acid-responsive element in
plants [30]. Zhang et al. [31] reported that 70 to 80% of CTT/GAA-
associated genes in A. thaliana are regulated by salicylic acid. (CTT)18
was identified in the 5′ upstream region 49 bp from the ThSOS1
translational start site. AtSOS1 and OsSOS1 also have CTT repeats in the
5′ UTR, but with very short units of (CTT)3 and (CTT)4, respectively.
Zhang et al. [31] reported that RT-PCR analyses resulted in different
expression patterns of (CTT)n or (GAA)n-associated genes in A.
thaliana in response to salicylic acid treatment. (CTT)4 showed a
down-regulated transcription pattern while repeats greater than
(CTT)5 showed constant levels of mRNA up to 48 h after treatment.
This finding indicated that the number of repeat units affected the
transcription or stability of (CTT)n/(GAA)n-associated genes. The large
number of CTT repeats might be a ThSOS1-specific feature affecting
the synthesis or stability of ThSOS1 transcripts. So far, genomic
sequences of SOS1 from Arabidopsis lyrata and Oryza sativa show no
apparent CTT repeats longer than four copies (Nah et al. unpublished).
Whether (CTT/GAA)n repeats in the SOS1 locus respond to salicylic
acid and whether salicylic acid is involved in salt tolerance remain to
be determined. To date, SSRs in plants have been mainly used for
marker applications, although a few examples of functional SSRs have
been reported [32,33]. This study has identified an SSR as a possible
cis-acting element with the potential to differentially regulate SOS1
in T. halophila and A. thaliana. The (TA)n and (TCA)n repeats associated
with ThSOS1 could also be potential cis-acting elements.

Materials and methods

Construction of T. halophila bacterial artificial chromosome library

All BAC library construction protocols were as previously described
[34]. Briefly, megabase-size DNA was isolated from T. halophila leaf
tissue (accession Shandong) using standard procedures. The DNAwas
partially digested with HindIII, sized-selected on a CHEF gel, the gel
purified and then ligated with HindIII digested pBeloBAC11, followed
by E. coli transformation. Recombinant clones were robotically picked
and arrayed into 384-well plates and archived at −80 °C. The BAC
library, hybridization filters, and individual clones are available upon
request from the Arizona Genomics Institute (www.genome.arizona.
edu).

BAC clone selection and sequencing

To obtain a BAC clone containing the ThSOS1 locus, two regions of a
putative ThSOS1 gene were used as probes. The first probe (1513 bp)
was generated by PCR amplification using T. halophila genomic DNA as
a template and primers designed to the A. thaliana SOS1 gene (AtSOS1)
and included 201 bp of the first exon and 1312 bp of upstream
sequence. The second probe (1405 bp) was a gene specific probe
derived from the 3′ end of a ThSOS1 cDNA and was designed to
distinguish ThSOS1 from the rest of the Na+/H+ antiporter gene
family members in A. thaliana. These probes were radio-labeled with
32P and used to probe colony hybridization filters derived from a
HindIII BAC library from T. halophila (accession Shandong) con-
structed by the Arizona Genomics Institute. Eleven BAC clones were
identified from this screen and confirmed by colony PCR with ThSOS1-
specific primers. The eleven BAC clones were end sequenced using
standard protocols [35] and the derived sequences were used to select
a BAC clone (FJ386403) that was predicted to contain the ThSOS1 gene
approximately in the middle of the BAC, based on BLAST searches
against the A. thaliana genome. DNA from the FJ386403 BAC clonewas

http://www.genome.arizona.edu
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randomly sheared using a Hydroshear (GeneMachines), end-repaired
and size-selected 2 to 5 kb insertswere ligated into the pBlueScript KS+
vector (Stratagene) to construct a shotgun library as previously
described [36]. Shotgun clones were bi-directionally sequenced using
T7 (5′-TAATACGACTCACTATAGGG-3′) and T3 (5′-AATTAACCCTCAC-
TAAAGGG-3′) primers with ABI (Applied Biosystems) Big Dye
Terminator 3.1 Chemistry on ABI 3730 XL automated DNA sequencers.
Base identification and quality assessments were made using PHRED
[37,38]. Shotgun reads (2252 reads) were assembled with PHRAP
(http://www.phrap.org/) and edited with CONSED [39] for graphic
display of assembly and for sequence finishing. Sequence gaps were
filled using a combination of bacterial transposon-mediated [40] and
primer walking methods as described previously [35]. The final
sequence assembly had an error rate of less than 1 in 10,000 bp. The
sequence has been deposited to the NCBI GenBank with accession
number of FJ386403.

BAC sequence analysis and annotation

Software programs Dotter [41], PipMaker [42] and ACT [43] were
used for the FJ386403 BAC-to-A. thaliana genome sequence alignment
and analysis. BLASTN, BLASTP, TBLASTN, BLASTX and BLAST2 analyses
were also used as required (http://www.ncbi.nlm.nih.gov/BLAST/).

For gene annotation of FJ386403 (193,021 bp), a gene prediction
program and EST and protein databases were used. For gene
prediction, FGENESH with the A. thaliana training set (http://sun1.
softberry.com) was chosen. Refinement of gene structure used the A.
thaliana EST databases from The Institute for Genomic Research
(TIGR) (http://compbio.dfci.harvard.edu/tgi/plant.html) and from
The Arabidopsis Information Resource (TAIR) (ftp://ftp.arabidopsis.
org/home/tair/Sequences/blast_datasets/), in addition to the Ara-
bidopsis full-length cDNA collection [44]. For functional annotation,
protein databases obtained from SwissProt (http://www.ebi.ac.uk/
swissprot/), The National Center for Biotechnology Information
(NCBI, http://www.ncbi.nlm.nih.gov/Genbank/) and TAIR were
used. Repeat elements were identified using Arabidopsis and other
plant repeat databases from the Genetic Information Research
Institute (GIRI, http://www.girinst.org/repbase/update/index.
html). The automated annotation results were retrieved in an XML
file for display and manual annotation in the Apollo Genome
Annotation Curation Tool (Version 1.6.5) [45]. When predicted
genes matched additional EST databases from species other than A.
thaliana with an E-value less than E−20, they were considered actual
genes. Hypothetical genes and transposons were not considered as
genes.

Both DNA transposons and retrotransposons were identified by a
combination of repeat database searches and structural confirmation.
LTR retrotransposable elements were identified by finding pairs of
duplicated regions as tentative LTRs using CROSS_MATCH (www.
phrap.org). Identification of internal coding sequences between two
LTRs and 4 to 6 bp of tandem direct repeats at the 5′ TG and 3′ CA
regions of LTRs were used as signatures of LTR structures. Simple
Sequence Repeats (SSRs) were searched for separately using the
SPUTNIK server (http://cbi.labri.fr/outils/Pise/sputnik.html).

Evolutionary analysis

Investigation of functional constraint between orthologous genes
was performed using a Ka/Ks test. A Perl script was used that takes a
dataset of cDNA sequences, checks for the absence of stop codons,
aligns them in translated sequences, returns the alignments into cDNA
sequences to estimate nonsynonymous (Ka) and synonymous (Ks)
substitutions using Maximum likelihood (ML) methods of the PAML
package [46]. Divergence time between T. halophila and A. thaliana
was estimated using the Ks values of 17 orthologous gene pairs that
were calculated based on the PAML package. A mutation rate of
1.5×10−8 mutations/site/year was used as described by Koch et al.
[5]. Phylogenetic trees were built using amino acid sequences from
coding regions. The neighbor joining method under the Poisson
correction model was used in MEGA3 with Bootstrap values of 1000.
Insertion times of LTR retrotransposable elements were estimated
based on the distance between pairs of LTRs. DNA sequence from both
LTRs from individual LTR retrotransposable elements were aligned
using ClustalW and the distance between them was estimated using
the Kimura-2-parameter model implemented in MEGA3 [47]. For
estimation of LTR insertion time, the average substitution rate of
1.3×10−8 mutations/site/year was used [48].
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